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SECU04TY CLASSIF4CATION Of T"?S PCAGE

A continuous flow indirett calorimetry system was developed consisting of a holuirg cage
in which the monke, r':.ided. Calculation of metabolic parameters was done trom measure-
ments of 02, CO2, PH20' Pa. F ou'and temperature using the algorithms of Brown (3). As

oa addition to the munkev exercising wheel, an airtight enclosure was designed which
er~abl2d the use of the rLmerLerv s' -,em fcr measurement of metaboliJ" rates during
exercise. Tpica] metd'- ... rates durý.;A davlight hours were 40 to 53 watts per meter
square (W/m') at rest ana 70 to 80 ý,/m~ during exeicise. It is highly significant that
the Respiratory Quotient (RQ) and aetabolic rate measured with our new calorimetry
system are the same as those we previously reported in chair-restrained animals. This new
technology will be very useful as we ccntinue to examine the short- and long-term effects
of neuroactive aoents .ýn crimate thermoregulation, metabolisa, and exercise tolerance,

8 y . . ......

~C LA

~~~~~1 T_____________



TABLE OF CONTENTS

Page

INTRODUCTION .................. ........................ I

METHODS AND MATERIALS ................... .................... 1

Design of the Exercise Device ............. .............. 1

Exercise Program Operation .............. ............... 2

Pyridostigmine Study ................. .................. 2

Treatment of Data ................... .................... 4

RESULTS ..................... ............................ 4

DISCUSSION ... ............ ........... ................. 10

REFERENCES .................... ......................... 12

APPENDIX: Report on the Measurement of Energy Expenditure by
Indirect Calorimetry in Patas Monkeys at Rest and
During Exercise ................ ................. 15

List of Figures

Fig.
No.

1. Primate Exercise Wheel (PEW) ........... ............ 3

2. Effects of Atropine and Exercise on Heart Rate at Ta
of 25 'C .................... ...................... 5

3. Effects of Atropine and Exercise on Rectal Tempera-
ture at Ta of 25 .C ...... ................... 6

4. Effects of Atropine and Exercise o-i Heart Rate at Ta
of 35 C .................................. 8

5. Effects of Atropine on Rectal Temperature during ex-
ercise at Ta of 35 .C ....... ............... 9

A-1. Monkey Indirect Xtlorimetry System ...... ......... 1.

lii



List of Tables
Table
INo. Page

1. Summary of Atropine Results During Exercise at
25 'C and 35 'C .............. ................... 4

2. Summary of Pyridostigmine Effects During Exercise
at 35 *C ................. ...................... 7

A-i. Calorimetry Data Average Daily 02 and CO 2 and Min-
ute Metabolic Rate ........... ................ 16

Iv



THE EFFECTS OF ATROPINE AND PYRIDOSTIGXINE
ON THERMOREGULATION AND WORK TOLERANCE IN THE PATAS MONKEY

INTRODUCTION

Atropine, the most common antidote for anticholinesterase
poisoning (13), suppresses thermoregulatory sweating, and even-
tually, evaporative heat loss through its anticholinergic activity
(2) resulting in increased net heat storage (1, 15), decreased heat
tolerance, and reduced exercise performance (4, 6, 7, 9).

Pyridostigmine is used in conjunction with atropine as a
prophylactic against anticholinesterase poisoning by reversibly
inhibiting cholinesterase. Depending on the degree of enzyme
inhibition and state of ordination, these drugs affect
thermoregulation and exercise performance in a negative (11) or
positive way (12).

In a previous study, the physiological effects of 2 neuro-
genic drugs, atropine and pyridostigmine, on the thermoregulatory
effector system of the patas monkeys were evaluated at rest. It
was concluded that this species was an appropriate animpl model to
study the effects of neuroactive drugs on temperature regulation
and thermoregulatory capacity (1, 10). This study expands the
previous work by testing the effects of atropine and pyridos-
tigmine on the thermoregulatory capacity of patas monkeys during
exercise in the heat. Prolonged exercise in the heat represents a
condition where tha metabolic and environmental heat load may be
considerable and provides the body with maximum strain to chal-
lenge the thermoregulatory control system. Since atropine and
pyridostigmine interfere with the heat dissipation mechanisms, the
testing of these neuroactive agents during prolonged exercise in
the heat provides maximum challenge to the thermoregulatory system
and gives information about the thermoregulatory capacity of
primates, and perhaps, man.

MENTODS AND MATERIALS

The apparatus used to evaluate the exercise tolerance of the
pAtau monkey was a treadmill wheel (Fig. 1) specifically
constructed to exercise nonhuman primates (8) (Arpendix). The
whqel, consisting of two 122-cm (48 in.) diameter Lucito rings and
120 aluminum bars, forms a circular cage aich rotated freely on
four bearings. Another ring, affixed to the outside of each Lucite
ring, was connoctad to alternate alluminum bar's to provide
electrical mJmulation for conditioning the animal. The activity



wheel included: 1) a magnetic tachometer pickup to quantitate
speed; 2) an automatic control panel interconnected with the
tachometer to allow the setting of upper and lower speed limiCs
which the animal had to maintain in order to avoid a sequence of
visual or electrical stimuli; 3) a micrcswitch at the bottom of the
control panel which counted each revoluticn of the wheel and
calculated distance traveled; and 4) a brake to stabilize the wheel
during the rest periods as well as to prevent the animal from
cperating the wheel at higher than predetermined rates.

Inercise Progran Operation

Five patas monkeys were trained to operate the treadmill wheel
unt'l they learned to run at a minimum rate of 2 miles/hour (mph)
for 60 min (20).

At the end of a 20-week training period. each animal was
capable of completing at ieast 1 h of exercise while control values
of exercising heart rate (HR) and rectal temperature (Tre) were
measured every 15 nin by a noninvasive telemetry system. The system
consisted of an AMF Quantum XL transmitter for measuring the HR and
a Mini-Mitter rectal probe transmitter for measuring Tre.
HR was recorded by an AMF Quantum digital watch receiver in
beats/min (bpm) while Tre was recorded by a President AX52 FM
receiver and converted to 0C using calibration curves validated in
this laboratory. Total distance covered in miles, average speed in
ý-.les/hour, and total exercise time were also recorded. Water loss
was estimated from weight differonce measured before and after the
exercAsf test.

The criteria used to establish the exercise tolerance of the
anina1 .s and to terminate the standard exercise test were any one of
th" following: heart rates that approach maximal heart rates for
thi" species, approximately 300 bpm; a Tre :iqher than 40 C to
F.rý,toct the animals from heat injiury, or going J times underspoed
(2 -p•h) in each of 2 consecutive 15-rin periods.

The standard axorcirip teots were then repeated following
it rr~pmne treatmenort anrJ 3 monthn later after pyrtdotigmine
treatment.

Two dayz ifter each animal completed a standard exercise test
,,t 2r) "C, anothe." excrcse test was carviod cut immediately
followirg a 0.03 mq/qk sinqla intramuncular (i.m.) atropine
in)oction: a doro f-apibles of establishing blood lpvtls of atropir.e
isa ,,,ious to t hat rproir)IOw-' in himanq following an i.m. in) jction of

nrl (14, 17). Tha siamp proci'dure wan r-pented 3 1;ayn later at

Pyrldogtiqaine Otudy

(,fe •day aft i!r a t dard arall tyst w)n carriet out at
j' 0 ach animal1 wat; t iepatpl' oral I y wit h I sepairate doses of
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solid 0.4 mg/kg pyridostigmine in a piece of banana. The afternoon
of the next day, the animal repeated the exercise test after
receiving 2 doses of 0.4 mg/kg pyridcstigmine- 1 in the morning and
1 an hour prior to exercise, making a total of 5 doses. The 0.4
mg/kg pyridostigmine dosage is capable of reducing cholinesterase
plasma levels by 25 to 30% of normal immediately after the second
dose and keeps the levels down througnout the treatment period (1).

Treatment sf Da•

The results are presented as means and standard deviation.
They were analyzed by a two-way (condition x time) analysis of
variance (ANOVA) with repeated measures on both factors. Turkey's
test of critical differences was also' used where appropriate. All
significant differences are reported at p < .05, unless otherwise
noted.

RESULTS

The effects of atropine at 25 IC are shown in Table 1 and
Figures 2 and 3.

TABLE 1. SUMMARY OF ATROPINE RESULTS DURING EXERCISE AT
25 *C AND 35 *C

Water loss Time Distance Speed
(g/min) (min) (mi) (mph)

' -i - 25 0C

Cortrol 1.2 177.0 4.8 1.6
+_1.7 +_39.7 +1.2 10.05

Atropine 1.3 146.8' 4.0 1.6
411.6 *_30.5 *0.9 t0.1

Ta - 35 0C

Crn t ro1 2. 149.6 3.6 1.5
t2.1 43'7.1 40.8 ±O.1

At rop i ni 1 .8 M 84.00"' 2. 5t) 1.7'
*2. ] *-.9 40.5 •0.1

" p " .05
"M p OR

Atropine sir;niflcAntiy Incroaesd fAtique And shortened the
axprciqo tolerAnce t imo by ApprnximAtoly 30 min. No uhjqniri-ant
lift-r-nco wn% rounl in the amo(unt or wimtr lons, distance triveolod
or the anima1n' nv.raqo nvpo(I. rlqurops 2 And I show that mean HP
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and Tre responses increased from rest to exercise. While HR during
exercise increased slightly over time in the control experiments,
atropine administration caused a further increase in HR and was
significantly greater at 60 min when compared to the no treatment
condition. In addition, atropine was associated with a significant
increase in Tre by the end of the first 30 min of exercise and
remained 0.5 *C higher at 60 min of exercise, significantly
different compared to the respective no treatment period. Mean
final HR (F-HR) and Tre(F-Tre) values were not significantly
different from the respective values in the control experiments.

The effects of atropine at 35 0C appear in Table 2 and Figures
4 and 5. At this environmental temperature, atropine produced a
reduction in water loss rates (22%) and a reduction in total
exercise time of 65 min less than ;he control value. Consequently,
the distance covered in miles was also less (p < .06). It was also
interesting that average speed in mph was slightly but
significantly faster in the atropine experiments as compared to the
controls. As illustrated in Figure 4, the mean HR response
increased from rest to exercise and at the end of exercise. The
mean HR response at 60 min of exercise decreased slightly from that
at 30 min of exercise due to the fact that 2 animals reached their
exercise tolerance before the first hour of exercise and only the
mean HR response for 3 animals is shown. The mean HR response in
the atropine experiments was higher at 60 min of exercise and
before the end of exercise compared to the respective control
experimental periods. Figure 5 shows the mean Tre responses in the
heat continued to increase throughout the exercise time. However,
atropine administration caused further increase in the rate of heat
storage, compared to the respective no treatment exercise period.

Table 2 shows pyridostigmine treatment tended to increase
water loss (11%) and was associated with an average exercise time
of 61 min longer than the control value and consequently longer
distance traveled in miles. Average speed in mph was slightly but
signiticantly higher in the pyridostigmine experiments compared to
the controls. Final heart rate (F-HR) and final Tre (F-Tre)
responses were not significantly different from those in the
control experiments.

TABLE 2. SUMMARY OF PYRIDOSTIGMINE EFFECTS DURING EXERCISE AT
35 0C

R-HR F-HR R-Tre 7-Tre Water Time Distance Speed
Loss

(bRnM) (Mp ) OC) (-i-C) (aliin)(mm) 12 (4m01

Control 160.4 223.0 37.9 39.3 1.9 115.0 3.0 1.5
t10.9 +11.0 +0.1 t0.2 +3.0 +29.0 t0.8 ±0.1

Pyrido- 160.6 214.2 37.7 39.0 2.1 175.0* 5.0* 1.7'
stigmine t10.7 +11.8 +0.2 +0.3 +3.0 +29.0 +U.9 +0.1

* p < .05
R-Resting
F-Final

7
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DISCUSSION

The results of these studies showed that the physiologitcal
effects of atropine in exercising patas monkeys were similar to
those reported for humans. The suppressed sweating capacity of the
atropine significantly affected the heat loss mechanisms of the
exercising animals in the heat as indicated by the 43% reduction in
water loss. On the contrary, during exercise at thermoneutral
environment, the amount of water loss was not significantly
different between the atropine and c'.,ntrol experiments. During
exercise, there is enhanced release of epinephrine by the adrenal
medulla which accounts for increased sweating (24); a fact which at
neutral environment seems to completely counteract the negative
effects of atropine on sweating. The suppressed sweating induced
by atropine generally resulted in increased heat storage causing
considerable ther"al strain on the animals. It is speculated to
account for the reduced time that the animals could exercise. In
addition, exercise in the heat caused much faster rise in the rate
of neat storage on the animal's body with potentially greater
performance decrements and increased risks for heat injuries. For
instance, exercise in the heat, for all animals but one, was
terminated by the investigator when the Tre was in excess of 40 OC.
Conversely, at the thermoneutral environment, the animals took
longer to reach exercise tolerance. The time that elapsed between
the first signs of discomfort and the time they reached the
criteria for termination of exercise (see Methods and Materials)
was also much longer. At this cnvironmertal temperature, all
animals but one were stopped from exercising because they fulfilled
the criterion concerning the speed limit that should be sustained.
Although mean F-Tre response at 25 0C was not significantly
different in the control and atropine exercise experiments, these
data revealed that animals with low exercise tolerance (exercise
time < 2.30 h) demonstrated much higher F-Tre values in tte
atropine experiments (40.2 "C vs control value of 39.5 CC). This may
have to do with the pharmocokinetics of atropine in the plasma
(half-life 2.5 h) and the fact that the exercise time of the
animals varied between 1.30 and 5.0 hours.

Mahoney (22) investiqated the response of a single patas
monkey while running in the heat and reported that at any given
temperature the onset of exer.ise caused a threefold increase !n
conductance reqardless of the particular speed. Some of this
increave could be associated with increased blood flow to the
working muscles, and previous work from this laboratory in resting
Animals showed that atropine induced peripheral vasodilation as
indicated by increased whole-body conductance (1). Similar
increases in ronductance were also found in exercising human
subjects after atropine (9, 19). Therafore, it was speculated that
increased blood pooling in the peL phery to compensate for the
decreased heat dissipation from sweating would have aqgravated the
problem by compromising blood flow to the exercising muscles and
would havy reduced their exercise capacity.

10



Although atropine blood levels were not measured in this
study, results show that the time course for the physiological
effects of atropine on heart rate and heat loss mechanisms, as
indicated by increase in Tre, was between 30 to 60 min post-
injection. This finding agrees with the reslts found by other
investigators involving a variety of atropine dosages injected in
human subjects (5, 6, 21, 23, 25). Furthermore, Craig (4) reported
that 2 mg of atropine, a dose analogous to the one administered in
the present study, resulted in nearly maximal vagal inhibition. In
this study, mean final heart rate increased by !6 bpm and mean
finpl rectal temperature increased by 0.7 0C under the influence of
atropine during exercise in the heat. Various results, ccn.,erning
the amount of increase in HR and Tre, have been found in human
studies (4, 21, 25). Direct comparisons between the studies are
tenuous because of differences in environmental conditions, subject
variability, exercise mode, and protocols used.

The effects of pyridostigmine treatment have been reported in
rats but not in primates. Francesconi et al. (11) reported that in
rats, pharmacological acute doses of pyridostigmine qreat.&,
affected exercise performance, thermoregulation, and chemical
indices of heat/exercise injury following 64% cholinesterase inhi-
bition. In another study, Francesconi et al. (12) reported that
moderate cholinesterase inhibition of 23% and 39% attenuated
several of the acute responses and had no debilitating effects on
physical performance and thermoregulation during exercise in the
heat. They reached the conclusion that a rather narrow range of
cholinesterase inhibition must be achieved before the physiological
and protective effects of pyridostigmine are observed. Their
findings agzee with the results found in this study. We found that
oral administration of 0.4 mg/kg pyridostigmine improved
thermoregulatory function and was associated with a 60 min longer
average exercise time than the control value.

11
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APPENDIX

REPORT ON THE MEASUREMENT OF ENERGY EXPENDITURE
BY INDIRECT CALORIMETRY IN PATAS MONKEYS

AT REST AND DURING EXERCISE

A continuous flow indirect calorimetry system was developed
consisting of a metabolic cage in which the monkey resided. Fresh
air was pulled through the cage by a fan and the airflow out was
measured by a turbine flow-rate meter. Airstream temperature and
water vapor pressure were measured before a small aliquot of gas
was sampled for oxygen and carbon dioxide content (Fig. A-l).
Calculation of metabolic parameters from the measurement of

2 ,CO, 2 ,P,, P,, F ,and temperature was done using the algorithms of
Brown (31', which account for the storage (integration) of gas
volumes in the metabolic cage. As an addition to the monkey
exercising wheel, an airtight enclosure was developed which used
the calorimetry system for metabolic rate measurement during
exercise.

Five patas monkeys underwent a week of metabolic measurements
in the metabolic cage. These same 5 monkeys then underwent a week
in the metabolic cage combined with 3 exercise periods of 3 h.
Typical metabolic rates during daylight hours were 40 W/m2 at rest
and 70 to 80 W/mz during exercise. Table A-1 illustrates the
calorimetry data for daily oxygen, carbon dioxide, and metabolic
rates for each monkey at rest and with exercise. It should be noted
that the W/m2 are on a per minute basis and are averages for an
entire day including the dark period in which metabolic rates may
go as low as 16 to 18 W/m2 .
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Figure A-I. Monkey indirect calorimetry system.

TABLZ A-i. CALCRIMET•Y DATA AVERAGL DAILY 0 AND CO, AND
MINUTE MEMABOLIC RATE.

FIO 64.53 85.67 0.75 36.40F 9 75.91 76.59 0.99 25.60
f) 4 f2.67 91.69 0.68 29.26B333 67.30 73.76 0.91 32.99M9207 55.85 71.58 0.77 32.70Total per day 326.26 400.29 0.82 31.40

Avg/min 31.40

PUJ5 EXERCISE

riOX $0.27 92.53 0.87 40.46
7 9VX 91.43 93.10 1.00 31.21K5584 EX 72.30 77.81 0.93 26.42

RJJJ EX 73.11 74.96 0.98 34.04M9207 EX 6 .46 71.45 0.93 33.51
Total pIr day 345.59 409.84

Avg/min * 33.13
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The results of the study using the newly designed continuous
flow indirect calorimetry system for quantitation of energy
expenditure in unrestrained monkeys is significant in light of on-
going studies of the effects of neuroactive agents on temperature
regulation, metabolism, and work tolerance.

This is the first study that reports resting metabolic rate
data in unrestziined patas monkeys. It is highly significant that
the TQ and metabolic rate during daylight hours mea3ured with our
new calorimetry system are of the same order of magnitude as those
which we have previously reported (16, 18) in chair-restrained
3nimals. It should also be noted that the RQ's recorded in the
exercise experiment are those which one would predict in an
exercising animal (Table 1). Furthermore, the metabolic rate
quantitates for the first time that,with the exercise wheel, we
are inducing metabolic rates that are approximately twice those of
the resting level. The metabolic rates during the exerciue period
aere significantly higher than the daylight resting metabolic
rates. Finally, it should be noted that in terms of 24 h energy
expenditure, 3 exercise periods of 3 h duration during a 24 h
period did not result in a significant increase in the metabolic
rate when averaged over a 24 h period (Table A-i).

It is clear that the technology that has been developed will
be very useful as we continue to examine the short- and long-term
ef.ects of neuroactive agents on thermoregulation, metabolism, and
exercise tolerance in nonhuman primates.
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